Antiandrogens
Aspirin
Bromhexine
Budesonide
Cannabidiol
Casirivimab/i..
Colchicine
Conv. Plasma
Curcumin
Diet
Ensovibep
Exercise
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Iota-carragee..
Ivermectin
Lactoferrin
Melatonin
Metformin
Molnupiravir
Nigella Sativa
Nitazoxanide
Paxlovid
Peg.. Lambda
Povidone-Iod..
Proxalutamide
Quercetin
Remdesivir
Sleep
Sotrovimab
Vitamin A
Vitamin C
Vitamin D
Zinc

Other
Feedback Home
Home   COVID-19 treatment studies for Vitamin D  COVID-19 treatment studies for Vitamin D  C19 studies: Vitamin D  Vitamin D   Select treatmentSelect treatmentTreatmentsTreatments
Antiandrogens (meta) Lactoferrin (meta)
Aspirin (meta) Melatonin (meta)
Bamlaniv../e.. (meta) Metformin (meta)
Bebtelovimab (meta) Molnupiravir (meta)
Bromhexine (meta) N-acetylcys.. (meta)
Budesonide (meta) Nigella Sativa (meta)
Cannabidiol (meta) Nitazoxanide (meta)
Casirivimab/i.. (meta) Paxlovid (meta)
Colchicine (meta) Peg.. Lambda (meta)
Conv. Plasma (meta) Povidone-Iod.. (meta)
Curcumin (meta) Probiotics (meta)
Diet (meta) Proxalutamide (meta)
Ensitrelvir (meta) Quercetin (meta)
Ensovibep (meta) Remdesivir (meta)
Exercise (meta) Sleep (meta)
Famotidine (meta) Sotrovimab (meta)
Favipiravir (meta) Tixagev../c.. (meta)
Fluvoxamine (meta) Vitamin A (meta)
Hydroxychlor.. (meta) Vitamin C (meta)
Iota-carragee.. (meta) Vitamin D (meta)
Ivermectin (meta) Zinc (meta)

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent: 
Vitamin D and COVID-19 susceptibility and severity in the COVID-19 Host Genetics Initiative: A Mendelian randomization study
Butler-Laporte et al., PLOS Medicine, doi:10.1371/journal.pmed.1003605
1 Jun 2021    Source   PDF   Share   Tweet
Mendelian randomization study not finding significant differences in COVID-19 outcomes based on vitamin D level. This study does not compare patients with deficiency/insuffiency/sufficiency, only providing ORs for increase in D levels. Authors note that their results do not apply to individuals with vitamin D deficiency.
Authors cite only 2 of the 25 vitamin D treatment studies (2 of 5 RCTs) at the time, including the only study reporting a negative effect. Authors indicate that they believe [Murai] was a significant result, however that study used cholecalciferol with very late stage patients. In practice, calcifediol/calcitrol would be used due to the long delay in conversion of cholecalciferol, hence the study is not informative of either normal late stage treatment, or earlier treatment. That authors believe the study is important suggests a strong bias.
Mendelian randomization studies compare the estimated effect of SNPs associated with variation in vitamin D levels on the health outcomes in large numbers of patients. For more background on Mendelian randomization studies and their limitations see [nature.com].
For reasons why Mendelian randomization may fail in this case, see [nutrition.bmj.com]. Authors suggest that it may come down to the use of 25(OH)D concentration in serum as a less than ideal proxy for vitamin D status of cells involved in the immune response. For most other purposes, it may not matter much that unbound (free) 25(OH)D is the better predictor of vitamin D deficiency and the resulting unfavourable outcomes. But for the MR analysis, the genetic instrument is strongly dominated by variation in the GC gene which modulates the concentration of vitamin D-binding protein (VDBP) in blood and thereby indirectly the concentrations of 25(OH)D and 1,25-dihydroxy vitamin D. Thus, the common GC alleles rs4588A and rs7041T are both associated with much lower than average vitamin D concentrations. In contrast, directly measured unbound (free) vitamin D concentrations are minimally affected by these alleles, if at all.
[Grant] suggest that the primary reasons for Mendelien randomization failure include that the total SNP-induced variation in 25(OH)D has often been less than assay variance, and that genome-wide association studies of SNP effects have been made on the full range of 25(OH)D levels, while the data is non-linear with a significant percentage in the low and high plateaus of the outcome relationships.
Butler-Laporte et al., 6/1/2021, peer-reviewed, 16 authors.
All Studies   Meta Analysis
This PaperVitamin DAll
Please send us corrections, updates, or comments. Vaccines and treatments are both valuable and complementary. All practical, effective, and safe means should be used. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. Denying the efficacy of any method increases mortality, morbidity, collateral damage, and the risk of endemic status. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit